22 research outputs found

    Role of plant secondary metabolites in combating pest induced stress in brinjal (Solanum melongena L.)

    Get PDF
    Brinjal or eggplant (Solanum melongena L.) is known as a vegetable of diet because it contains high moisture and low calorific value. It is also a good source of antioxidants and phytonutrients. Brinjal is widely grown in the South and South-East Asian countries and is the second most important vegetable in India. It belongs to the Solanaceae family. Shoot and fruit borer (Leucinodes orbonalis) pest of brinjal is the most widespread one and it has the ability to affect any of the developmental stages of brinjal. Plants and their insect herbivores have had a long and intimate evolutionary association that has resulted in many complex interactions mediated by specialized plant metabolites like phenolics, alkaloids, terpenoids, cyanogenic glycosides etc. Frequent and excessive use of insecticides has become a common practice now which only increases the probability of resistance development and resurgence of pest. Hence to develop an effective approach to combat this pest understanding of its feeding mechanism and chemistry of its interaction with the fruit is necessary. The importance of the secondary metabolites in the field of chemical biology and in pest management is discussed in this study

    Bioremediation: the eco-friendly solution to the hazardous problem of environmental pollution

    Get PDF
    Bioremediation is a technique to enhance natural biological processes to rectify polluted groundwater, soil, and even entire habitats. Bioremediation techniques use biological agents to act upon hazardous, toxic materials and subsequently convert them into less toxic substances.Microbes are organisms ubiquitously present in the biosphere. These microorganisms are the main agents that remediate toxic and polluted environmental conditions. Highly polluted areas can be rectified using proper bioremediation procedures and interventions. In this review we have studied the different bioremediation techniques which can be utilized to correct the harmful effects of environmental pollution. In this study we have also emphasized on the benefits of adopting bioremediation as an efficient alternative technique in comparison to the traditional physical and chemical methods to restore the healthy environmental conditions

    Tracing protons through the Galactic magnetic field: a clue for charge composition of ultra-high energy cosmic rays

    Get PDF
    We reconstruct the trajectories of ultra-high energy cosmic rays (UHECR) - observed by the AGASA experiment - in the Galactic magnetic field assuming that all particles have the same charge. We then study correlations between the reconstructed events and BL Lacs. The correlations have significance below 10^{-3} in the case of particles with charge +1. In the case of charge -1 the correlations are absent. We interpret this as evidence that protons are present in the flux of UHECR. Observed correlation provides an independent evidence that BL Lacs emit UHECR.Comment: 6 pages, 3 figures, LaTe

    Anisotropy at the end of the cosmic ray spectrum?

    Full text link
    The starburst galaxies M82 and NGC253 have been proposed as the primary sources of cosmic rays with energies above 1018.710^{18.7} eV. For energies \agt 10^{20.3} eV the model predicts strong anisotropies. We calculate the probabilities that the latter can be due to chance occurrence. For the highest energy cosmic ray events in this energy region, we find that the observed directionality has less than 1% probability of occurring due to random fluctuations. Moreover, during the first 5 years of operation at Auger, the observation of even half the predicted anisotropy has a probability of less than 10−510^{-5} to occur by chance fluctuation. Thus, this model can be subject to test at very small cost to the Auger priors budget and, whatever the outcome of that test, valuable information on the Galactic magnetic field will be obtained.Comment: Final version to be published in Physical Review

    Astrophysical magnetic fields and nonlinear dynamo theory

    Full text link
    The current understanding of astrophysical magnetic fields is reviewed, focusing on their generation and maintenance by turbulence. In the astrophysical context this generation is usually explained by a self-excited dynamo, which involves flows that can amplify a weak 'seed' magnetic field exponentially fast. Particular emphasis is placed on the nonlinear saturation of the dynamo. Analytic and numerical results are discussed both for small scale dynamos, which are completely isotropic, and for large scale dynamos, where some form of parity breaking is crucial. Central to the discussion of large scale dynamos is the so-called alpha effect which explains the generation of a mean field if the turbulence lacks mirror symmetry, i.e. if the flow has kinetic helicity. Large scale dynamos produce small scale helical fields as a waste product that quench the large scale dynamo and hence the alpha effect. With this in mind, the microscopic theory of the alpha effect is revisited in full detail and recent results for the loss of helical magnetic fields are reviewed.Comment: 285 pages, 72 figures, accepted by Phys. Re
    corecore